South Korean Researchers Develop Method To Wirelessly Power Medical Implants Using Light

Light photon to Power medical implants
Image credit: GIST

Medical implants, such as pacemakers offer additional advantages for the patient. They’ve had a significant impact on healthcare, especially on the long-term management of chronic conditions. But, to power these devices, re-implants and invasive surgery are often required, which may lead to a risk of surgical complications. Now, researchers at the Gwangju Institute of Science and Technology (GIST) in South Korea have developed a new method to power medical implants using an active photonic wireless system.

Read more Washington University Researchers Use Glucose as Power Source for Medical Implants

Most of the medical devices in use today require a constant source of energy to operate. Naturally, this causes some limitations: batteries, which provide an energy source for the implants, have a finite lifespan. Once the battery power gets exhausted, there is no other option but to perform invasive surgery to replace the battery, which poses a risk of surgical complications, such as bruising, infections, and other adverse events, reports GIST.

In a new study published in PNAS, a research group from South Korea, led by Professor Jong ho Lee at GIST, dug deeper to find a solution: they attempted to develop a strategy to recharge the internal battery of devices without invasive surgery or risky penetrative procedures.

“One of the greatest demands in biomedical electronic implants is to provide a sustainable electrical power for extended healthy life without battery replacement surgeries,” explains Prof Lee. Although this is a tricky concept, Prof Lee believes that the answer lies in the “translucency” of living tissue.

A university campus
The Gwangju Institute of Science and Technology (GIST) Image credit: GIST

This can be explained through an interesting phenomenon. When you hold your hand up to a powerful light, you can see that the edges of your hand glow as the light passes through your skin. Taking inspiration from this, Prof Lee and his team developed an “active photonic power transfer” method, which can generate electrical power in the body. This novel system consisted of two parts:  a skin-attachable micro-LED source patch—which can generate photons that would penetrate through the tissues—and a photovoltaic device integrated into a medical implant—which can capture the photons and generate electrical energy. This system provides a sustainable way of supplying the medical implant device with enough power to avoid any high-risk replacement methods. Prof Lee says, “Currently, a lack of a reliable source of power limits the functionality and performance of implant devices. If we can secure enough electrical power in our body, new types of medical implants with diverse functions and high performance can be developed.”

When the scientists tested this power system in mice, they found that this wireless power transfer system is easy to use, regardless of weather, clothes, indoor or outdoor conditions, etc. The light photons emitted from the source patch successfully penetrated live tissues in mice and recharged the device in a wireless and convenient manner.

Read more 7 Innovative Methods of Harvesting Energy to Power Wearable Devices

“These results enable the long-term use of currently available implants, in addition to accelerating emerging types of electrical implants that require higher power to provide diverse, convenient diagnostic and therapeutic functions in human bodies,” says Prof Lee, pleased with the efforts of his team and already looking forward to furthering their experiments. He concludes, “Our device would probably not work for ‘Iron Man,’ but it can provide enough power for medical implants.”

Previous articleVOS Systems Launches Contact Tracing Platform AlertTrace To Provide Precise COVID-19 Tracing For Employees
Next articleBHP Trials Wearable Technology On Its Iron Ore Mines During COVID-19
Cathy Russey
Cathy Russey () is Online Editor at WT | Wearable Technologies and specialized in writing about the latest medical wearables and enabling technologies on the market. Cathy can be contacted at info(at)wearable-technologies.com.